latest news

What's New At Isto.

Autologous Concentration system

Magellan is an autologous concentration system that delivers concentrated platelets and cells at the point of care.

Bone Graft Extender & Substitute

InQu is the cell-friendly biosynthetic™ bone graft with proven clinical efficacy leading to faster bone fusion.
Solutions
Our novel solutions for cell therapy and rapid bone healing are changing the field of spine and orthopedic treatments.

Autologous Concentration system

Magellan is an autologous concentration system that delivers concentrated platelets and cellsat the point of care.

Bone Graft Extender & Substitute

InQu is the cell-friendly biosynthetic™ bone graft with proven clinical efficacy leadingto faster bone fusion.

Autologous Concentration system

Magellan is an autologous concentration system that delivers concentrated platelets and cells at the point of care.

Bone Graft Extender & Substitute

InQu is the cell-friendly biosynthetic™ bone graft with proven clinical efficacy leading to faster bone fusion.
explore inqu

Autologous Concentration system

Magellan is an autologous concentration system that delivers concentrated platelets and cells at the point of care.
Explore Magellan

Bone Graft Extender & Substitute

InQu is the cell-friendly biosynthetic™ bone graft with proven clinical efficacy leading to faster bone fusion.
explore inqu

Autologous Concentration system

Magellan is an autologous concentration system that delivers concentrated platelets and cells at the point of care.
Explore Magellan

Bone Graft Extender & Substitute

InQu is the cell-friendly biosynthetic™ bone graft with proven clinical efficacy leading to faster bone fusion.
explore inqu
Solutions

Autologous Concentration system

Magellan is an autologous concentration system that delivers concentrated platelets and cellsat the point of care.

Bone Graft Extender & Substitute

InQu is the cell-friendly biosynthetic™ bone graft with proven clinical efficacy leadingto faster bone fusion.

Autologous Concentration system

Magellan is an autologous concentration system that delivers concentrated platelets and cellsat the point of care.

inqu bone graft extender & substitute

A summary of our

Compliance Program

1.

Leadership.

  • Chief Compliance Officer. We have appointed a Chief Compliance Officer to oversee our compliance program. The Chief Compliance Officer has the ability to effectuate change within Isto as necessary to promote compliance and to exercise independent judgment. The Chief Compliance Officer, among other responsibilities, is charged with developing, operating, and monitoring the compliance program.
  • Compliance Committee. Isto is establishing a Compliance Committee to work with the Chief Compliance Officer and to assist in the implementation of the compliance program. The Chief Compliance Officer also meets on an informal basis with management on compliance matters as needed.
2.

Written Standards

  • Policies. Isto maintains comprehensive policies on a variety of compliance matters, including Policies Regarding Interactions with Healthcare Professionals. These policies constitute our code of conduct and are our statement of ethical and compliance principles that guide our daily operations. The policies establish that we expect officers, directors, employees, and representatives of Isto to act in accordance with applicable law, regulations, and Isto policy. The policies articulate our fundamental principles, values, and framework for action within our organization.
  • Risk Areas. The OIG Guidance identifies several key risk areas for pharmaceutical and medical device manufacturers and called on companies to develop compliance policies in these risk areas. These risk areas are: (1) data integrity pertaining to government reimbursement practices; (2) kickbacks and other illegal remuneration; and (3) compliance with laws regulating sampling activities. To the extent applicable to Isto, we have established policies that address these areas.
3.

Education & training

Education of our officers, directors, employees, and representatives on their legal and ethical obligations is a key component of our compliance program. Isto is committed to taking steps to effectively communicate our standards and procedures to all affected personnel. In addition, Isto will regularly review and update our training programs and identify additional areas of training on an as-needed basis.

4.

Lines of Communication.

Isto has a longstanding policy of open communication among officers, directors, employees, and representatives. Our goal is that all parties know who to turn to report and discuss compliance matters and should be able to do so without fear of retribution. In order to assist with the reporting compliance matters, Isto has established a 24-hour toll-free telephonic answering service for reporting and tracking of compliance concerns to assist in the identification of possible unethical, illegal, or questionable behavior. The toll-free number is 1-800-724-1285 and should be utilized to report and discuss any compliance matters pertaining to Isto Biologics.

5.

Auditing and Monitoring.

Isto’s Compliance Program includes efforts to monitor, audit, and evaluate compliance with our policies and procedures through the use of both internal and external resources.

6.

Responding to Possible Violations and Discipline.

Isto investigates every instance of a possible compliance violation. Although every potential compliance situation is considered on a case-by-case basis, Isto will consistently impose appropriate disciplinary action to address inappropriate conduct and deter future violations.

7.

Corrective Actions.

Isto’s compliance program increases the likelihood of preventing or, at least, identifying unlawful and unethical behavior. However, Isto recognizes that even an effective compliance program may not prevent all violations. Isto’s compliance program requires that Isto respond promptly to all potential violations of applicable law, regulation, or policy, take appropriate disciplinary action, perform an assessment of the violation to ascertain if the violation reveals a gap in our policies, practices, or internal controls, and take appropriate action to prevent future violations.

Solutions

Magellan Autologous Concentration system

inqu bone graft extender & substitute

hr gap analysis

Magellan Autologous Concentration system

Explore Magellan
our blog

Inqu bone graft extender & substitute

Explore inqu
solutions

Magellan Autologous Concentration system

Explore Magellan
solutions

Inqu bone graft extender & substitute

Explore inqu

Guides

innovation for all

Old

McCormick F, Cole BJ, Nwachuka B, Harris JD, Adkisson HD, Farr J. Treatment of focal cartilage defects with a juvenile allogeneic articular cartilage graft. Operative Tech Sports Med 2013; 21:95-99
Tompkins M, Adkisson HD, Bonner KF. DeNovo NT Allograft. Operative Tech Sports Med 2013; 21:82-89.
Bonasia DE, Martin JA, Mamotti A, Amendola R, Adkisson HD, Amendola A. Co-cultures of adult and juvenile chondrocytes compared with adult and juvenile chondral fragments: in vitro matrix production. Am J Sports Med 2011; 39:2355-2361.
Acosta FL, Metz L, Liu J, Carruthers-Liebenberg E, Adkisson HD, Maloney M, Alvarez U, Lotz JC. Porcine intervertebral disc repair using allogeneic juvenile articular chondrocytes or mesenchymal stem cells. Tissue Eng Part A 2011 17:3045-3055.
Walsh WR, Oliver R, Gage G, Yu Y, Bell D, Bellmore J, Adkisson HD. Application of resorbable poly(lactide-co-glycolide) with entangled hyaluronic acid as an autograft extender for posterolateral intertransverse lumbar spine fusion in rabbits. Tissue Eng Part A, 2011 17:213-220.
Kim AJ, Adkisson HD, Wendland M, Seyedin M, Berven S, Lotz JC. Juvenile chondrocytes may facilitate disc repair. The Open Tissue Eng Regen Med J. 2010; 3:28-35.
Adkisson HD, 4th, Martin JA, Amendola RL, Milliman C, Mauch KA, Katwal AB, Seyedin M. Amendola A, Buckwalter, JA, Streeter, PR. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Amer J Sports Med. 2010; 38:1324-1333.
Adkisson, HD, Milliman C, Zhang X, Mauch K, Maziarz RT, Streeter PR. Immune evasion by neocartilage-derived chondrocytes: Implications for biologic repair of joint articular cartilage. Stem Cell Research 4:57-68, 2010.
Lu, Y., Adkisson, H.D., Bogdanske, J., Kalscheur, V., Maloney, W.J., Cheung, R., Grodzinsky, A.J., Hruska, K.A., Markel, M.D. In vivo transplantation of neonatal ovine neocartilage allografts: Determining the effectiveness of tissue transglutaminase. J Knee Surgery, 18:31-42, 2005.
Nochi, H., Sung, J.H., Lou, J., Adkisson, H.D., Maloney, W.J., Hruska, KA. Adenovirus mediated BMP-13 gene transfer induces chondrogenic differentiation of murine mesenchymal progenitor cells. J Bone Miner Res19:111-122, 2004.

A Faster Path to Healing

InQu partners with the body’s natural processes to form bone in a shorter period of time without inciting an immune response. In contrast, traditional synthetics rely on inflammation and recruitment of specialized cells to digest the mineral scaffold before new bone formation can begin.

Creeping substitution - traditional synthetics

Endochondral bone formation - inqu

Brochures

Brochures

Sports Medicine & Pain Management
Jang SJ, et al. Platelet-rich plasma (PRP) injections as an effective treatment for early osteoarthritis. Eur J Orthop Surg Traumatol. 2013;23: 573-580. doi: 10.1007/s00590-012-1037-5
Franklin, S. et al. The use of platelet-rich plasma for percutaneous treatment of tendinopathies. Operative Techniques in Orthopaedics. 2013;23(2):63-68.
Finnoff JT, et al. Treatment of chronic tendinopathy with ultrasound-guided needle tenotomy and platelet-rich plasma injection. American Academy of Physical Medicine and Rehabilitation. 2011;3(10):900-11. doi: 10.1016/j.pmrj.2011.05.015
Lee J, et al. Platelet-rich plasma injections with needle tenotomy for gluteus medius tendinopathy. The Orthopaedic Journal of Sports Medicine. 2016;4(11). DOI: 10.1177/2325967116671692
Podesta L, et al. Treatment of partial ulnar collateral ligament tears in the elbow with platelet-rich plasma. The American Journal of Sports Medicine. 2013;41(7):1689-94. doi: 10.1177/0363546513487979
Scollon-Grieve KL, et al. Platelet-rich plasma injection for partial tendon tear in a high school athlete: a case presentation. American Academy of Physical Medicine and Rehabilitation. 2011;3(4):391-5. doi: 10.1016/j.pmrj.2010.11.008
Sampson S, et al. Platelet-rich plasma therapy as a first line treatment for severe Achilles tendon tear: a case report. International Journal of Therapy and Rehabilitation. 2011;18(2):101-106.
Wilson JJ, et al. Platelet-rich plasma for the treatment of chronic plantar fasciopathy in adults: a case seriesFoot & Ankle Specialist. 2014;7:61-7. doi: 10.1177/1938640013509671 
Surgical Orthopedics
Everts PA, et al. Exogenous application of platelet-leukocyte gel during open subacromial decompression contributes to improved patient outcome. Eur Surg Res. 2004;40:203–210. DOI: 10.1159/000110862
Hannon CP, et al. Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy. 2016;32(2): 339-347.
Krych A, et al. Bone marrow concentrate improves early cartilage phase maturation of a scaffold plug in the knee: a comparative magnetic resonance imaging analysis to platelet-rich plasma and control. Am J Sports Med. 2016;44: 91. DOI: 10.1177/0363546515609597
Lee GW, et al. Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age? Eur J Orthop Surg Traumatol. 2013;23(5):581-7. doi:10.1007/s00590-012-1038-4
Rodriguez-Collazo ER, et. al. Combined use of the Ilizarov method, concentrated bone marrow aspirate (cBMA), and platelet-rich plasma (PRP) to expedite healing of bimalleolar fracturesStrategies in Trauma and Limb Reconstruction. 2015;10(3):161-166. doi: 10.1007/s11751-015-0239-x
Rodriguez-Collazo ER, et al. A retrospective look at integrating a novel regenerative medicine approach in plastic limb reconstruction. Plast Reconstr Surg Glob Open. 2017;5(1):e1214. doi: 10.1097/GOX.0000000000001214
Rodriguez-Collazo ER.  Combined use of the illizarov method, concentrated bone marrow aspirate. Orthopedics & Rheumatology. 2015;1(3): 555561.
Rodriguez-Collazo ER, et al. Bone marrow concentrate enriched in platelet growth factors combined with de-mineralized bone matrix for complex revision and complex lower limb arthrodesis. Orthop Rheumatol Open Access J. 2015;1(2): 555558.
Rodriguez-Collazo ER, et al. Combined use of the Ilizarov method, concentrated bone marrow aspirate (cBMA), and platelet-rich plasma (PRP) to expedite healing of bimalleolar fractures. Strat Traum Limb Recon. 2015;10:161-166. DOI 10.1007/s11751-015-0239-x
Skoff HD. Revision rotator cuff reconstruction for large tears with retraction: a novel technique using autogenous tendon and autologous marrow. Am J Orthop. 2015;44(7):326-331.
Smyth N, et al. The effect of platelet-rich plasma on autologous osteochondral transplantation: an in vivo rabbit model. J Bone Joint Surg Am. 2013 Dec 18;95(24):2185-93. doi: 10.2106/JBJS.L.01497
Vavken P, et al. The effect of platelet concentrates on graft maturation and graft-bone interface healing in ACL reconstruction in human patients: A systematic review of controlled trials. Arthroscopy. 2011;27(11):1573-83. doi: 10.1016/j.arthro.2011.06.003
Vogrin M, et al. The effect of platelet-derived growth factors on knee stability after anterior cruciate ligament reconstruction: a prospective randomized clinical study. Wien Klin Wochenschr. 2010;122 (2): 91–95. doi: 10.1007/s00508-010-1340-2
Zavadil D, et al. Autologous platelet gel and platelet poor plasma reduce pain with total shoulder arthroplasty. JECT. 2007;39:177–182.
Zhong W, et al. In vivo comparison of the bone regeneration capability of human bone marrow concentrates vs. Platelet-rich plasma. PLoS ONE. 2012;7(7): e40833. doi:10.1371/journal.pone.0040833
System Performance & Basic Science
Boakye L, et al. Platelet-rich plasma increases transforming growth factor-beta1 expression at graft-host interface following autologous osteochondral transplantation in a rabbit model. World J Orthop. 2015; 6(11): 961-969. DOI: 10.5312/wjo.v6.i11.961
Cassano JM, et al. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2016. doi: 10.1007/s00167-016-3981-9
Castillo TN, et al. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med. 2011;39(2):266-71. doi: 10.1177/036354651038751
Christensen K, et al. Autologous platelet gel: an in vitro analysis of platelet-rich plasma using multiple cycles. JECT. 2006;38:249–253.
Degen RM, et al. Commercial separation systems designed for preparation of platelet-rich plasma yield differences in cellular composition. HSS J. 2017;13(1):75-80. doi: 10.1007/s11420-016-9519-3
Dhurat R, et al. Principles and methods of preparation of platelet-rich plasma: a review and author's perspective. J Cutan Aesthet Surg. 2014;7(4):189-97. doi: 10.4103/0974-2077.150734
Dohan E, et al. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27(3):158-67. doi: 10.1016/j.tibtech.2008.11.009
Fitzpatrick J, et al. Analysis of platelet-rich plasma extraction variations in platelet and blood components between 4 common commercial kits. Orthop J Sports Med. 2017;5(1):2325967116675272. doi: 10.1177/2325967116675272
Gersch RP. Platelet rich plasma augments adipose-derived stem cell growth and differentiation. Aesthet Surg J. 2017;1;37(6):723-729. doi: 10.1093/asj/sjw235
Joshi SU, et al. Patient-derived and intraoperatively formed biomaterial for tissue engineering. Methods Mol Biol. 2017;1553:265-272. doi: 10.1007/978-1-4939-6756-8_21
Kelc R, et al. Platelet-rich plasma, especially when combined with a TGF-β inhibitor promotes proliferation, viability and myogenic differentiation of myoblasts in vitro. PLoS ONE. 10(2):e0117302. doi:10.1371/journal.pone.0117302
McDaniel JS, et al. Alternatives to autograft evaluated in a rabbit segmental bone defect. Int Orthop. 2016;40(1):197-203. doi: 10.1007/s00264-015-2824-5
Mishra A, et al. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Engineering. 2009;15(3):431-5. doi: 10.1089/ten.tec.2008.0534
Ogura T, et al. A novel method of preparing platelet-rich plasma (PRP): an automatic blood separation device “Magellan.” Wound Repair and Regeneration. 2013. 21(1):A2.
O’Shea CM, et al. Comparison of platelet counting technologies in equine platelet concentrates. Vet Surg. 2015;44(3):304-13. doi: 10.1111/j.1532-950X.2014.12290.x
Pochini A de C, et al. Analysis of cytokine profile and growth factors in platelet-rich plasma obtained by open systems and commercial columnsEinstein. 2016;14(3):391-397. doi:10.1590/S1679-45082016AO3548
Wound Healing
Englert S, et al. Autologous platelet gel applications during cardiovascular surgery: effect on wound healing. JECT. 2005;37:148–152.
Hom D, et al. The healing effects of autologous platelet gel on acute human skin wounds. Arch Facial Plast Surg. 2007; 9(3):174-83. doi: 10.1001/archfaci.9.3.174
Kakudo N, et al. The use of autologous platelet-rich plasma in the treatment of intractable skin ulcer: A case series. Open Journal of Regenerative Medicine. 2012; 01(03):29-32. doi: 10.4236/ojrm.2012.13005
Litmathe J, et al. The use of autologous platelet gel (APG) for high-risk patients in cardiac surgery – is it beneficial? Perfusion. 2009. 24(6):381-7. doi: 10.1177/0267659109358283
Patel AN, et al. Evaluation of autologous platelet rich plasma for cardiac surgery: outcome analysis of 2000 patients. J Cardiothorac Surg. 2016. 11(1):62. doi: 10.1186/s13019-016-0452-9
Saratzis N, et al. Non-activated autologous platelet-rich plasma for the prevention of inguinal wound-related complications after endovascular repair of abdominal aortic aneurysms. J Extra Corpor Technol. 2008; 40(1):52-6.
Vang S, et al. Autologous platelet gel in coronary artery bypass grafting: effects on surgical wound healing. JECT. 2007;39:31–38.
other applications
Brady C, et aI. Use of autologous platelet gel in bariatric surgery. J Extra Corpor Technol. 2006; 38:161-164.
Cervelli V, et al. P.R.L. Platelet rich lipotransfert: our experience and current state of art in the combined use of fat and PRP. Biomed Res Int. 2013. doi: 10.1155/2013/434191
Gentile P, et al. A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Transl Med. 2012;1(4):341-51. doi: 10.5966/sctm.2011-0065
Rademakers LM, et al. Stability of an autologous platelet clot in the pericardial sac: An experimental and clinical study. J Thorac Cardiovasc Surg. 2009;137(5):1190-4. doi: 10.1016/j.jtcvs.2008.10.012
Wehberg KE, et al. Intramyocardial injection of autologous platelet-rich plasma combined with transmyocardial revascularization. Cell Transplant. 2009;18(3):353-9. doi: 10.3727/096368909788534988
bone-marrow derived cells
Ambikaipalan A, Wong JM, and Khan WS. Preclinical and clinical studies on the use of stem cells for bone repair: a systematic review. Current Stem Cell Research & Therapy. 8: 210-2016. 2013.
Harrell DB, et al. Non-hematopoietic essential functions of bone marrow: a review of scientific and clinical literature and rationale for treating bone defects. Orthop Rev. 7:5691. 2015. doi: 10.40181/or2015.5691.
Cell-Separation technology
Aronowitz JA, et al. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus. 4:713. 2015. doi: 10.11861540064-015-1509-2.
Guven S, et al. Validation of an automated procedure to isolate human adipose tissue–derived cells by using the Sepax® technology. TISSUE ENGINEERING: Part C. 18(8). 2012.
Zinno F, et al. Processing of hematopoietic stem cells from peripheral blood before cryopreservation: use of a closed automated system. Transfusion. 51(12): 2656-2663. 2011.
spinal disc injection
Haufe SMW and Mork AR. Intradiscal injection of hematopoietic stem cells in an attempt to rejuvenate the intervertebral disc. Stem Cells Dev. 15:136-137. 2006.
Pettine KA, et al.  Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells. 33:146-156. 2015.
Tuakli-Worsonu YA, et al. Lumbar intradiskal platelet-rich plasma (PRP) injections: A prospective, double blind, randomized controlled study. PMR doi: 10.1016/j.pmrj. 2015.08.010, 2016.
Spinal fusion
prp vs. cbma
Ajiboye, R.M., et al. Clinical and radiographic outcomes of concentrated bone marrow aspirate with allograft and demineralized bone matrix for posterolateral and interbody lumbar fusion in elderly patients. Eur Spine J. 24: 2567. 2015. doi:10.1007/s00586-015-4117-5.
Gan Y, et al. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials. (29): 3973-3982. 2008.
Hart R, et al. Allograft alone versus allograft with bone marrow concentrate for the healing of the instrumented posterolateral lumbar fusion. Spine J. 14(7): 1318-1324. 2014.
Johnson, RG.  Bone marrow concentrate with allograft equivalent to autograft in lumbar fusions. Spine. 39(9): 695-700. 2014.
Vadala G, et al. Use of autologous bone cells concentrate enriched with platelet-rich fibrin on corticocancellous bone allograft for posterolateral multilevel cervical fusion.  J Tiss Eng Regen Med. 2: 515-520. 2008
cardiovascular/infection control
Jeevananthan V, et al. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012; doi: 10.1161/circulationaha.111.086074.
Hernigou P, et al.  Local transplantation of bone marrow concentrated granulocytes precursors can cure without antibiotics infected non-union of polytraumatic patients in absence of bone defectInt Orthop.  40:2331-2338, 2016.
general orthopedics
Connolly J, et al. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clinical Orthopaedics and Related Research. 263: 259-270. 1991.
Ganji V, et al. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells: a pilot study. Journal of Bone and Joint Surgery. 1153-1160. 2004.
Hendrich C, et al. Safety of autologous bone marrow concentrate transplantation: initial experiences in 101 patients. Orthop Rev. 1:e32. 2009.
Hernigou P, et al. Cancer risk is not increased in patients treated for orthopaedic diseases with autologous bone marrow cell concentrate. J Bone Joint Surg Am. 95 (24): 2215-2221. 2013.
Hernigou P, Poignard A, Beaujean F, and Rouard H. Percutaneous autologous bone marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 87:1430-1437. 2005.
critical limb ischemia
Iafrati, M.D., et al. Early results and lessons learned from a multicenter, randomized, double-blind trial of bone marrow aspirate concentrate in critical limb ischemia.  Journal of Vascular Surgery. 54(6): 1650-1658. 2011.
Liang TW, et al. Autologous bone marrow mononuclear cell therapy for critical limb ischemia is effective and durable. J Vasc Surg. 63(6): 1541-1546. 2016.
Ponemone V, et al.  Safety and effectiveness of bone marrow cell concentrate in the treatment of chronic critical limb ischemia utilizing a rapid point-of-care system. Stem Cells Int. 2017 doi: 10.1155/2017/413762

Publications

SPORTS MEDICINE & PAIN MANAGEMENT INJECTIONS
Jang SJ, et al. Platelet-rich plasma (PRP) injections as an effective treatment for early osteoarthritis. Eur J Orthop Surg Traumatol. 2013;23: 573-580. doi: 10.1007/s00590-012-1037-5
Franklin, S. et al. The use of platelet-rich plasma for percutaneous treatment of tendinopathies. Operative Techniques in Orthopaedics. 2013;23(2):63-68.
Finnoff JT, et al. Treatment of chronic tendinopathy with ultrasound-guided needle tenotomy and platelet-rich plasma injection. American Academy of Physical Medicine and Rehabilitation. 2011;3(10):900-11. doi: 10.1016/j.pmrj.2011.05.015
Lee J, et al. Platelet-rich plasma injections with needle tenotomy for gluteus medius tendinopathy. The Orthopaedic Journal of Sports Medicine. 2016;4(11). DOI: 10.1177/2325967116671692
Podesta L, et al. Treatment of partial ulnar collateral ligament tears in the elbow with platelet-rich plasma. The American Journal of Sports Medicine. 2013;41(7):1689-94. doi: 10.1177/0363546513487979
Scollon-Grieve KL, et al. Platelet-rich plasma injection for partial tendon tear in a high school athlete: a case presentation. American Academy of Physical Medicine and Rehabilitation. 2011;3(4):391-5. doi: 10.1016/j.pmrj.2010.11.008
Sampson S, et al. Platelet-rich plasma therapy as a first line treatment for severe Achilles tendon tear: a case report. International Journal of Therapy and Rehabilitation. 2011;18(2):101-106.
Wilson JJ, et al. Platelet-rich plasma for the treatment of chronic plantar fasciopathy in adults: a case seriesFoot & Ankle Specialist. 2014;7:61-7. doi: 10.1177/1938640013509671 
SURGICAL ORTHOPEDICS
Everts PA, et al. Exogenous application of platelet-leukocyte gel during open subacromial decompression contributes to improved patient outcome. Eur Surg Res. 2004;40:203–210. DOI: 10.1159/000110862
Hannon CP, et al. Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy. 2016;32(2): 339-347.
Krych A, et al. Bone marrow concentrate improves early cartilage phase maturation of a scaffold plug in the knee: a comparative magnetic resonance imaging analysis to platelet-rich plasma and control. Am J Sports Med. 2016;44: 91. DOI: 10.1177/0363546515609597
Lee GW, et al. Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age? Eur J Orthop Surg Traumatol. 2013;23(5):581-7. doi:10.1007/s00590-012-1038-4
Rodriguez-Collazo ER, et. al. Combined use of the Ilizarov method, concentrated bone marrow aspirate (cBMA), and platelet-rich plasma (PRP) to expedite healing of bimalleolar fracturesStrategies in Trauma and Limb Reconstruction. 2015;10(3):161-166. doi: 10.1007/s11751-015-0239-x
Rodriguez-Collazo ER, et al. A retrospective look at integrating a novel regenerative medicine approach in plastic limb reconstruction. Plast Reconstr Surg Glob Open. 2017;5(1):e1214. doi: 10.1097/GOX.0000000000001214
Rodriguez-Collazo ER.  Combined use of the illizarov method, concentrated bone marrow aspirate. Orthopedics & Rheumatology. 2015;1(3): 555561.
Rodriguez-Collazo ER, et al. Bone marrow concentrate enriched in platelet growth factors combined with de-mineralized bone matrix for complex revision and complex lower limb arthrodesis. Orthop Rheumatol Open Access J. 2015;1(2): 555558.
Rodriguez-Collazo ER, et al. Combined use of the Ilizarov method, concentrated bone marrow aspirate (cBMA), and platelet-rich plasma (PRP) to expedite healing of bimalleolar fractures. Strat Traum Limb Recon. 2015;10:161-166. DOI 10.1007/s11751-015-0239-x
Skoff HD. Revision rotator cuff reconstruction for large tears with retraction: a novel technique using autogenous tendon and autologous marrow. Am J Orthop. 2015;44(7):326-331.
Smyth N, et al. The effect of platelet-rich plasma on autologous osteochondral transplantation: an in vivo rabbit model. J Bone Joint Surg Am. 2013 Dec 18;95(24):2185-93. doi: 10.2106/JBJS.L.01497
Vavken P, et al. The effect of platelet concentrates on graft maturation and graft-bone interface healing in ACL reconstruction in human patients: A systematic review of controlled trials. Arthroscopy. 2011;27(11):1573-83. doi: 10.1016/j.arthro.2011.06.003
Vogrin M, et al. The effect of platelet-derived growth factors on knee stability after anterior cruciate ligament reconstruction: a prospective randomized clinical study. Wien Klin Wochenschr. 2010;122 (2): 91–95. doi: 10.1007/s00508-010-1340-2
Zavadil D, et al. Autologous platelet gel and platelet poor plasma reduce pain with total shoulder arthroplasty. JECT. 2007;39:177–182.
Zhong W, et al. In vivo comparison of the bone regeneration capability of human bone marrow concentrates vs. Platelet-rich plasma. PLoS ONE. 2012;7(7): e40833. doi:10.1371/journal.pone.0040833
SYSTEM PERFORMANCE & BASIC SCIENCE
Boakye L, et al. Platelet-rich plasma increases transforming growth factor-beta1 expression at graft-host interface following autologous osteochondral transplantation in a rabbit model. World J Orthop. 2015; 6(11): 961-969. DOI: 10.5312/wjo.v6.i11.961
Cassano JM, et al. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2016. doi: 10.1007/s00167-016-3981-9
Castillo TN, et al. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med. 2011;39(2):266-71. doi: 10.1177/036354651038751
Christensen K, et al. Autologous platelet gel: an in vitro analysis of platelet-rich plasma using multiple cycles. JECT. 2006;38:249–253.
Degen RM, et al. Commercial separation systems designed for preparation of platelet-rich plasma yield differences in cellular composition. HSS J. 2017;13(1):75-80. doi: 10.1007/s11420-016-9519-3
Dhurat R, et al. Principles and methods of preparation of platelet-rich plasma: a review and author's perspective. J Cutan Aesthet Surg. 2014;7(4):189-97. doi: 10.4103/0974-2077.150734
Dohan E, et al. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27(3):158-67. doi: 10.1016/j.tibtech.2008.11.009
Fitzpatrick J, et al. Analysis of platelet-rich plasma extraction variations in platelet and blood components between 4 common commercial kits. Orthop J Sports Med. 2017;5(1):2325967116675272. doi: 10.1177/2325967116675272
Gersch RP. Platelet rich plasma augments adipose-derived stem cell growth and differentiation. Aesthet Surg J. 2017;1;37(6):723-729. doi: 10.1093/asj/sjw235
Joshi SU, et al. Patient-derived and intraoperatively formed biomaterial for tissue engineering. Methods Mol Biol. 2017;1553:265-272. doi: 10.1007/978-1-4939-6756-8_21
Kelc R, et al. Platelet-rich plasma, especially when combined with a TGF-β inhibitor promotes proliferation, viability and myogenic differentiation of myoblasts in vitro. PLoS ONE. 10(2):e0117302. doi:10.1371/journal.pone.0117302
McDaniel JS, et al. Alternatives to autograft evaluated in a rabbit segmental bone defect. Int Orthop. 2016;40(1):197-203. doi: 10.1007/s00264-015-2824-5
Mishra A, et al. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Engineering. 2009;15(3):431-5. doi: 10.1089/ten.tec.2008.0534
Ogura T, et al. A novel method of preparing platelet-rich plasma (PRP): an automatic blood separation device “Magellan.” Wound Repair and Regeneration. 2013. 21(1):A2.
O’Shea CM, et al. Comparison of platelet counting technologies in equine platelet concentrates. Vet Surg. 2015;44(3):304-13. doi: 10.1111/j.1532-950X.2014.12290.x
Pochini A de C, et al. Analysis of cytokine profile and growth factors in platelet-rich plasma obtained by open systems and commercial columnsEinstein. 2016;14(3):391-397. doi:10.1590/S1679-45082016AO3548
WOUND HEALING
Englert S, et al. Autologous platelet gel applications during cardiovascular surgery: effect on wound healing. JECT. 2005;37:148–152.
Hom D, et al. The healing effects of autologous platelet gel on acute human skin wounds. Arch Facial Plast Surg. 2007; 9(3):174-83. doi: 10.1001/archfaci.9.3.174
Kakudo N, et al. The use of autologous platelet-rich plasma in the treatment of intractable skin ulcer: A case series. Open Journal of Regenerative Medicine. 2012; 01(03):29-32. doi: 10.4236/ojrm.2012.13005
Litmathe J, et al. The use of autologous platelet gel (APG) for high-risk patients in cardiac surgery – is it beneficial? Perfusion. 2009. 24(6):381-7. doi: 10.1177/0267659109358283
Patel AN, et al. Evaluation of autologous platelet rich plasma for cardiac surgery: outcome analysis of 2000 patients. J Cardiothorac Surg. 2016. 11(1):62. doi: 10.1186/s13019-016-0452-9
Saratzis N, et al. Non-activated autologous platelet-rich plasma for the prevention of inguinal wound-related complications after endovascular repair of abdominal aortic aneurysms. J Extra Corpor Technol. 2008; 40(1):52-6.
Vang S, et al. Autologous platelet gel in coronary artery bypass grafting: effects on surgical wound healing. JECT. 2007;39:31–38.
OTHER APPLICATIONS
Brady C, et aI. Use of autologous platelet gel in bariatric surgery. J Extra Corpor Technol. 2006; 38:161-164.
Cervelli V, et al. P.R.L. Platelet rich lipotransfert: our experience and current state of art in the combined use of fat and PRP. Biomed Res Int. 2013. doi: 10.1155/2013/434191
Gentile P, et al. A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Transl Med. 2012;1(4):341-51. doi: 10.5966/sctm.2011-0065
Rademakers LM, et al. Stability of an autologous platelet clot in the pericardial sac: An experimental and clinical study. J Thorac Cardiovasc Surg. 2009;137(5):1190-4. doi: 10.1016/j.jtcvs.2008.10.012
Wehberg KE, et al. Intramyocardial injection of autologous platelet-rich plasma combined with transmyocardial revascularization. Cell Transplant. 2009;18(3):353-9. doi: 10.3727/096368909788534988
SYSTEM PERFORMANCE & BASIC SCIENCE
Boakye L, et al. Platelet-rich plasma increases transforming growth factor-beta1 expression at graft-host interface following autologous osteochondral transplantation in a rabbit model. World J Orthop. 2015; 6(11): 961-969. DOI: 10.5312/wjo.v6.i11.961
Hannon CP, et al. Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy. 2016;32(2): 339-347.
BONE-MARROW DERIVED CELLS
Ambikaipalan A, Wong JM, and Khan WS. Preclinical and clinical studies on the use of stem cells for bone repair: a systematic review. Current Stem Cell Research & Therapy. 8: 210-2016. 2013.
Harrell DB, et al. Non-hematopoietic essential functions of bone marrow: a review of scientific and clinical literature and rationale for treating bone defects. Orthop Rev. 7:5691. 2015. doi: 10.40181/or2015.5691.
CELL-SEPARATION TECHNOLOGY
Aronowitz JA, et al. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus. 4:713. 2015. doi: 10.11861540064-015-1509-2.
Guven S, et al. Validation of an automated procedure to isolate human adipose tissue–derived cells by using the Sepax® technology. TISSUE ENGINEERING: Part C. 18(8). 2012.
Zinno F, et al. Processing of hematopoietic stem cells from peripheral blood before cryopreservation: use of a closed automated system. Transfusion. 51(12): 2656-2663. 2011.
SPINAL DISC INJECTION
Haufe SMW and Mork AR. Intradiscal injection of hematopoietic stem cells in an attempt to rejuvenate the intervertebral disc. Stem Cells Dev. 15:136-137. 2006.
Pettine KA, et al.  Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells. 33:146-156. 2015.
Tuakli-Worsonu YA, et al. Lumbar intradiskal platelet-rich plasma (PRP) injections: A prospective, double blind, randomized controlled study. PMR doi: 10.1016/j.pmrj. 2015.08.010, 2016.
SPINAL FUSION
Ajiboye, R.M., et al. Clinical and radiographic outcomes of concentrated bone marrow aspirate with allograft and demineralized bone matrix for posterolateral and interbody lumbar fusion in elderly patients. Eur Spine J. 24: 2567. 2015. doi:10.1007/s00586-015-4117-5.
Gan Y, et al. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials. (29): 3973-3982. 2008.
Hart R, et al. Allograft alone versus allograft with bone marrow concentrate for the healing of the instrumented posterolateral lumbar fusion. Spine J. 14(7): 1318-1324. 2014.
Johnson, RG.  Bone marrow concentrate with allograft equivalent to autograft in lumbar fusions. Spine. 39(9): 695-700. 2014.
Vadala G, et al. Use of autologous bone cells concentrate enriched with platelet-rich fibrin on corticocancellous bone allograft for posterolateral multilevel cervical fusion.  J Tiss Eng Regen Med. 2: 515-520. 2008
PLATELET-RICH PLASMA (PRP) VS. CONCENTRATED BONE MARROW ASPIRATE (cBMA)
Betsch M, et al. Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PLOS One.  8(8): e71602. 2013.
Cassano, J.M., Kennedy, J.G., Ross, K.A. et al. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2016. doi:10.1007/s00167-016-3981-9
CARDIOVASCULAR/INFECTION CONTROL
Jeevananthan V, et al. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012; doi: 10.1161/circulationaha.111.086074.
Hernigou P, et al.  Local transplantation of bone marrow concentrated granulocytes precursors can cure without antibiotics infected non-union of polytraumatic patients in absence of bone defectInt Orthop.  40:2331-2338, 2016.
GENERAL ORTHOPEDICS
Connolly J, et al. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clinical Orthopaedics and Related Research. 263: 259-270. 1991.
Ganji V, et al. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells: a pilot study. Journal of Bone and Joint Surgery. 1153-1160. 2004.
Hendrich C, et al. Safety of autologous bone marrow concentrate transplantation: initial experiences in 101 patients. Orthop Rev. 1:e32. 2009.
Hernigou P, et al. Cancer risk is not increased in patients treated for orthopaedic diseases with autologous bone marrow cell concentrate. J Bone Joint Surg Am. 95 (24): 2215-2221. 2013.
Hernigou P, Poignard A, Beaujean F, and Rouard H. Percutaneous autologous bone marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 87:1430-1437. 2005.
CRITICAL LIMB ISCHEMIA
Iafrati, M.D., et al. Early results and lessons learned from a multicenter, randomized, double-blind trial of bone marrow aspirate concentrate in critical limb ischemia.  Journal of Vascular Surgery. 54(6): 1650-1658. 2011.
Liang TW, et al. Autologous bone marrow mononuclear cell therapy for critical limb ischemia is effective and durable. J Vasc Surg. 63(6): 1541-1546. 2016.
Ponemone V, et al.  Safety and effectiveness of bone marrow cell concentrate in the treatment of chronic critical limb ischemia utilizing a rapid point-of-care system. Stem Cells Int. 2017 doi: 10.1155/2017/413762

Technique Guides

Videos

CellPoint Demo Video
InQu - Mechanism of Action
Magellan Demo Video
Bone Marrow Aspiration with Dr. Mark Chang, M.D.
Bone Marrow Aspiration with Dr. Mark Chang, M.D.
NBA Finals bold predictions, MVP favorites and what's next

Videos

Job Title
City
Description
Customer Service Rep
Boston, MA
Medical Education Manager
Denver, CO
Project Manager
Boston, MA

Publications

Magellan

Sports Medicine & Pain Management
Jang SJ, et al. Platelet-rich plasma (PRP) injections as an effective treatment for early osteoarthritis. Eur J Orthop Surg Traumatol. 2013;23: 573-580. doi: 10.1007/s00590-012-1037-5
Franklin, S. et al. The use of platelet-rich plasma for percutaneous treatment of tendinopathies. Operative Techniques in Orthopaedics. 2013;23(2):63-68.
Finnoff JT, et al. Treatment of chronic tendinopathy with ultrasound-guided needle tenotomy and platelet-rich plasma injection. American Academy of Physical Medicine and Rehabilitation. 2011;3(10):900-11. doi: 10.1016/j.pmrj.2011.05.015
Lee J, et al. Platelet-rich plasma injections with needle tenotomy for gluteus medius tendinopathy. The Orthopaedic Journal of Sports Medicine. 2016;4(11). DOI: 10.1177/2325967116671692
Podesta L, et al. Treatment of partial ulnar collateral ligament tears in the elbow with platelet-rich plasma. The American Journal of Sports Medicine. 2013;41(7):1689-94. doi: 10.1177/0363546513487979
Scollon-Grieve KL, et al. Platelet-rich plasma injection for partial tendon tear in a high school athlete: a case presentation. American Academy of Physical Medicine and Rehabilitation. 2011;3(4):391-5. doi: 10.1016/j.pmrj.2010.11.008
Sampson S, et al. Platelet-rich plasma therapy as a first line treatment for severe Achilles tendon tear: a case report. International Journal of Therapy and Rehabilitation. 2011;18(2):101-106.
Wilson JJ, et al. Platelet-rich plasma for the treatment of chronic plantar fasciopathy in adults: a case seriesFoot & Ankle Specialist. 2014;7:61-7. doi: 10.1177/1938640013509671 
Surgical Orthopedics
Everts PA, et al. Exogenous application of platelet-leukocyte gel during open subacromial decompression contributes to improved patient outcome. Eur Surg Res. 2004;40:203–210. DOI: 10.1159/000110862
Hannon CP, et al. Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy. 2016;32(2): 339-347.
Krych A, et al. Bone marrow concentrate improves early cartilage phase maturation of a scaffold plug in the knee: a comparative magnetic resonance imaging analysis to platelet-rich plasma and control. Am J Sports Med. 2016;44: 91. DOI: 10.1177/0363546515609597
Lee GW, et al. Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age? Eur J Orthop Surg Traumatol. 2013;23(5):581-7. doi:10.1007/s00590-012-1038-4
Rodriguez-Collazo ER, et. al. Combined use of the Ilizarov method, concentrated bone marrow aspirate (cBMA), and platelet-rich plasma (PRP) to expedite healing of bimalleolar fracturesStrategies in Trauma and Limb Reconstruction. 2015;10(3):161-166. doi: 10.1007/s11751-015-0239-x
Rodriguez-Collazo ER, et al. A retrospective look at integrating a novel regenerative medicine approach in plastic limb reconstruction. Plast Reconstr Surg Glob Open. 2017;5(1):e1214. doi: 10.1097/GOX.0000000000001214
Rodriguez-Collazo ER.  Combined use of the illizarov method, concentrated bone marrow aspirate. Orthopedics & Rheumatology. 2015;1(3): 555561.
Rodriguez-Collazo ER, et al. Bone marrow concentrate enriched in platelet growth factors combined with de-mineralized bone matrix for complex revision and complex lower limb arthrodesis. Orthop Rheumatol Open Access J. 2015;1(2): 555558.
Rodriguez-Collazo ER, et al. Combined use of the Ilizarov method, concentrated bone marrow aspirate (cBMA), and platelet-rich plasma (PRP) to expedite healing of bimalleolar fractures. Strat Traum Limb Recon. 2015;10:161-166. DOI 10.1007/s11751-015-0239-x
Skoff HD. Revision rotator cuff reconstruction for large tears with retraction: a novel technique using autogenous tendon and autologous marrow. Am J Orthop. 2015;44(7):326-331.
Smyth N, et al. The effect of platelet-rich plasma on autologous osteochondral transplantation: an in vivo rabbit model. J Bone Joint Surg Am. 2013 Dec 18;95(24):2185-93. doi: 10.2106/JBJS.L.01497
Vavken P, et al. The effect of platelet concentrates on graft maturation and graft-bone interface healing in ACL reconstruction in human patients: A systematic review of controlled trials. Arthroscopy. 2011;27(11):1573-83. doi: 10.1016/j.arthro.2011.06.003
Vogrin M, et al. The effect of platelet-derived growth factors on knee stability after anterior cruciate ligament reconstruction: a prospective randomized clinical study. Wien Klin Wochenschr. 2010;122 (2): 91–95. doi: 10.1007/s00508-010-1340-2
Zavadil D, et al. Autologous platelet gel and platelet poor plasma reduce pain with total shoulder arthroplasty. JECT. 2007;39:177–182.
Zhong W, et al. In vivo comparison of the bone regeneration capability of human bone marrow concentrates vs. Platelet-rich plasma. PLoS ONE. 2012;7(7): e40833. doi:10.1371/journal.pone.0040833
System Performance & Basic Science
Boakye L, et al. Platelet-rich plasma increases transforming growth factor-beta1 expression at graft-host interface following autologous osteochondral transplantation in a rabbit model. World J Orthop. 2015; 6(11): 961-969. DOI: 10.5312/wjo.v6.i11.961
Cassano JM, et al. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2016. doi: 10.1007/s00167-016-3981-9
Castillo TN, et al. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med. 2011;39(2):266-71. doi: 10.1177/036354651038751
Christensen K, et al. Autologous platelet gel: an in vitro analysis of platelet-rich plasma using multiple cycles. JECT. 2006;38:249–253.
Degen RM, et al. Commercial separation systems designed for preparation of platelet-rich plasma yield differences in cellular composition. HSS J. 2017;13(1):75-80. doi: 10.1007/s11420-016-9519-3
Dhurat R, et al. Principles and methods of preparation of platelet-rich plasma: a review and author's perspective. J Cutan Aesthet Surg. 2014;7(4):189-97. doi: 10.4103/0974-2077.150734
Dohan E, et al. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27(3):158-67. doi: 10.1016/j.tibtech.2008.11.009
Fitzpatrick J, et al. Analysis of platelet-rich plasma extraction variations in platelet and blood components between 4 common commercial kits. Orthop J Sports Med. 2017;5(1):2325967116675272. doi: 10.1177/2325967116675272
Gersch RP. Platelet rich plasma augments adipose-derived stem cell growth and differentiation. Aesthet Surg J. 2017;1;37(6):723-729. doi: 10.1093/asj/sjw235
Joshi SU, et al. Patient-derived and intraoperatively formed biomaterial for tissue engineering. Methods Mol Biol. 2017;1553:265-272. doi: 10.1007/978-1-4939-6756-8_21
Kelc R, et al. Platelet-rich plasma, especially when combined with a TGF-β inhibitor promotes proliferation, viability and myogenic differentiation of myoblasts in vitro. PLoS ONE. 10(2):e0117302. doi:10.1371/journal.pone.0117302
McDaniel JS, et al. Alternatives to autograft evaluated in a rabbit segmental bone defect. Int Orthop. 2016;40(1):197-203. doi: 10.1007/s00264-015-2824-5
Mishra A, et al. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Engineering. 2009;15(3):431-5. doi: 10.1089/ten.tec.2008.0534
Ogura T, et al. A novel method of preparing platelet-rich plasma (PRP): an automatic blood separation device “Magellan.” Wound Repair and Regeneration. 2013. 21(1):A2.
O’Shea CM, et al. Comparison of platelet counting technologies in equine platelet concentrates. Vet Surg. 2015;44(3):304-13. doi: 10.1111/j.1532-950X.2014.12290.x
Pochini A de C, et al. Analysis of cytokine profile and growth factors in platelet-rich plasma obtained by open systems and commercial columnsEinstein. 2016;14(3):391-397. doi:10.1590/S1679-45082016AO3548
Wound Healing
Englert S, et al. Autologous platelet gel applications during cardiovascular surgery: effect on wound healing. JECT. 2005;37:148–152.
Hom D, et al. The healing effects of autologous platelet gel on acute human skin wounds. Arch Facial Plast Surg. 2007; 9(3):174-83. doi: 10.1001/archfaci.9.3.174
Kakudo N, et al. The use of autologous platelet-rich plasma in the treatment of intractable skin ulcer: A case series. Open Journal of Regenerative Medicine. 2012; 01(03):29-32. doi: 10.4236/ojrm.2012.13005
Litmathe J, et al. The use of autologous platelet gel (APG) for high-risk patients in cardiac surgery – is it beneficial? Perfusion. 2009. 24(6):381-7. doi: 10.1177/0267659109358283
Patel AN, et al. Evaluation of autologous platelet rich plasma for cardiac surgery: outcome analysis of 2000 patients. J Cardiothorac Surg. 2016. 11(1):62. doi: 10.1186/s13019-016-0452-9
Saratzis N, et al. Non-activated autologous platelet-rich plasma for the prevention of inguinal wound-related complications after endovascular repair of abdominal aortic aneurysms. J Extra Corpor Technol. 2008; 40(1):52-6.
Vang S, et al. Autologous platelet gel in coronary artery bypass grafting: effects on surgical wound healing. JECT. 2007;39:31–38.
other applications
Brady C, et aI. Use of autologous platelet gel in bariatric surgery. J Extra Corpor Technol. 2006; 38:161-164.
Cervelli V, et al. P.R.L. Platelet rich lipotransfert: our experience and current state of art in the combined use of fat and PRP. Biomed Res Int. 2013. doi: 10.1155/2013/434191
Gentile P, et al. A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Transl Med. 2012;1(4):341-51. doi: 10.5966/sctm.2011-0065
Rademakers LM, et al. Stability of an autologous platelet clot in the pericardial sac: An experimental and clinical study. J Thorac Cardiovasc Surg. 2009;137(5):1190-4. doi: 10.1016/j.jtcvs.2008.10.012
Wehberg KE, et al. Intramyocardial injection of autologous platelet-rich plasma combined with transmyocardial revascularization. Cell Transplant. 2009;18(3):353-9. doi: 10.3727/096368909788534988

cellpoint

bone-marrow derived cells
Ambikaipalan A, Wong JM, and Khan WS. Preclinical and clinical studies on the use of stem cells for bone repair: a systematic review. Current Stem Cell Research & Therapy. 8: 210-2016. 2013.
Harrell DB, et al. Non-hematopoietic essential functions of bone marrow: a review of scientific and clinical literature and rationale for treating bone defects. Orthop Rev. 7:5691. 2015. doi: 10.40181/or2015.5691.
Cell-Separation technology
Aronowitz JA, et al. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus. 4:713. 2015. doi: 10.11861540064-015-1509-2.
Guven S, et al. Validation of an automated procedure to isolate human adipose tissue–derived cells by using the Sepax® technology. TISSUE ENGINEERING: Part C. 18(8). 2012.
Zinno F, et al. Processing of hematopoietic stem cells from peripheral blood before cryopreservation: use of a closed automated system. Transfusion. 51(12): 2656-2663. 2011.
spinal disc injection
Haufe SMW and Mork AR. Intradiscal injection of hematopoietic stem cells in an attempt to rejuvenate the intervertebral disc. Stem Cells Dev. 15:136-137. 2006.
Pettine KA, et al.  Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells. 33:146-156. 2015.
Tuakli-Worsonu YA, et al. Lumbar intradiskal platelet-rich plasma (PRP) injections: A prospective, double blind, randomized controlled study. PMR doi: 10.1016/j.pmrj. 2015.08.010, 2016.
Spinal fusion
Ajiboye, R.M., et al. Clinical and radiographic outcomes of concentrated bone marrow aspirate with allograft and demineralized bone matrix for posterolateral and interbody lumbar fusion in elderly patients. Eur Spine J. 24: 2567. 2015. doi:10.1007/s00586-015-4117-5.
Gan Y, et al. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials. (29): 3973-3982. 2008.
Hart R, et al. Allograft alone versus allograft with bone marrow concentrate for the healing of the instrumented posterolateral lumbar fusion. Spine J. 14(7): 1318-1324. 2014.
Johnson, RG.  Bone marrow concentrate with allograft equivalent to autograft in lumbar fusions. Spine. 39(9): 695-700. 2014.
Vadala G, et al. Use of autologous bone cells concentrate enriched with platelet-rich fibrin on corticocancellous bone allograft for posterolateral multilevel cervical fusion.  J Tiss Eng Regen Med. 2: 515-520. 2008
Whole Blood vs. bone marrow
Betsch M, et al. Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PLOS One.  8(8): e71602. 2013.
Cassano, J.M., Kennedy, J.G., Ross, K.A. et al. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2016. doi:10.1007/s00167-016-3981-9
cardiovascular/infection control
Jeevananthan V, et al. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012; doi: 10.1161/circulationaha.111.086074.
Hernigou P, et al.  Local transplantation of bone marrow concentrated granulocytes precursors can cure without antibiotics infected non-union of polytraumatic patients in absence of bone defectInt Orthop.  40:2331-2338, 2016.
general orthopedics
Connolly J, et al. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clinical Orthopaedics and Related Research. 263: 259-270. 1991.
Ganji V, et al. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells: a pilot study. Journal of Bone and Joint Surgery. 1153-1160. 2004.
Hendrich C, et al. Safety of autologous bone marrow concentrate transplantation: initial experiences in 101 patients. Orthop Rev. 1:e32. 2009.
Hernigou P, et al. Cancer risk is not increased in patients treated for orthopaedic diseases with autologous bone marrow cell concentrate. J Bone Joint Surg Am. 95 (24): 2215-2221. 2013.
Hernigou P, Poignard A, Beaujean F, and Rouard H. Percutaneous autologous bone marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 87:1430-1437. 2005.
critical limb ischemia
Iafrati, M.D., et al. Early results and lessons learned from a multicenter, randomized, double-blind trial of bone marrow aspirate concentrate in critical limb ischemia.  Journal of Vascular Surgery. 54(6): 1650-1658. 2011.
Liang TW, et al. Autologous bone marrow mononuclear cell therapy for critical limb ischemia is effective and durable. J Vasc Surg. 63(6): 1541-1546. 2016.
Ponemone V, et al.  Safety and effectiveness of bone marrow cell concentrate in the treatment of chronic critical limb ischemia utilizing a rapid point-of-care system. Stem Cells Int. 2017 doi: 10.1155/2017/413762
Contact Us

Partner with Isto

Thank you!
Your submission has been received! A member of the Isto Biologics team will be in touch with you soon.
Oops! Something went wrong while submitting the form.
Contact Us

Partner with Isto

Thank you!
Your submission has been received! A member of the Isto Biologics team will be in touch with you soon.
Oops! Something went wrong while submitting the form.