References
1. Chedid MK, Tundo KM, Block JM, Muir JM. Hybrid biosynthetic autograft extender for use in posterior lumbar interbody fusion: safety and clinical effectiveness. Open Orthop J. 2015;9:218-225. doi: 10.2174/1874325001509010194.
2. Solchaga LA, Dennis JE, Goldberg VM, Kaplan AI. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res. 1999;17:205-213. doi: 10.1002/jbm.10011. • 3. Kim HD, Valentini RF. Retention and activity of BMP-2 in
3. Kim HD, Valentini RF. Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J Biomed Mater Res. 2002;59(3): 573-84. doi: 10.1002/jbm.10011.
4. Stewart G, Gage GB, Neidert G, Adkisson HD IV. Within patient radiological comparative analysis of the performance of two bone graft extenders utilized in posterolateral lumbar fusion: a retrospective case series. Front Surg. 2016;2(69). doi: 10.3389/fsurg.2015.00069.
5. Grande D; North Shore Hospital. In vitro cell binding assay results; unpublished, independent data.
6. Hsu EL, Ghodasra JH, Ashtekar A, et al. A comparative evaluation of factors influencing osteoinductivity among scaffolds designed for bone regeneration. Tissue Eng Part A. 2013;19(15-16):1764-1771. doi: 10.1089/ten. TEA.2012.0711.
7. Bohner M. Siliconsubstituted calcium phosphates - a critical review. Biomaterials. 2009;30(32):6403-6406. doi: 10.1016/j.biomaterials.2009.08.007.
8. Walsh WR, Oliver RA, Gage G, et al. Application of resorbable poly(lactide-co-glycolide) with entangled hyaluronic acid as an autograft extender for posterolateral intertransverse lumbar fusions in rabbits. Tissue Eng Part A. 2011;17(1-2):213-220. doi: 10.1089/ten.TEA.2010.0008.
9. Harris TE. Treatment of long bone fractures and nonunion using InQu Bone Graft Extender & Substitute.
10. Kerzner, MS. A radiographic and clinical retrospective case series of high risk foot & ankle procedures (Charcot reconstruction) using InQu Bone Graft Substitute.
Return to Inqu