1. AMSI Source: TS-0078-182.
2. Patel A, et al. Evaluation of autologous platelet-rich plasma for cardiac surgery: outcome analysis of 2000 patients. J Cardiothorac Surg. 2016. 11(1):62. doi: 10.1186/s13019-016-0452-9.
3. Castillo T, et al. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. The American Journal of Sports Medicine. 2011. 39(2):266-271.
4. Shapiro S, et al. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. The American Journal of Sports Medicine. 2017. 45(1):82-90. doi: 10.1177/0363546516662455.
5. Cassano JM, et al. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2016. doi: 10.1007/s00167-016-3981-9.
6. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999. 284(5411):143-147. doi: 10.1126/science.284.5411.143.
7. Kalka C, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. PNAS. 2000. 97(7):3422-3427.
8. Bessler H, et al. Postoperative pain, morphine consumption, and genetic polymorphism of IL-1β and IL-1 receptor antagonist. Neuroscience Letters. 2006. 404(1-2):154-158.
9. AMSI Source: TS-001A-008.
10. AMSI Source: TS-0078-103.
The Magellan Autologous Platelet Separator System is designed to be used in the clinical laboratory or intraoperatively at the point of care for the safe and rapid preparation of platelet-poor plasma and platelet concentrate (platelet-rich plasma) from a small sample of a mixture of blood and bone marrow. The plasma and concentrated platelets produced can be used for diagnostic tests. Additionally, the platelet-rich plasma can be mixed with autograft and/or allograft bone prior to application to an orthopedic site (BK040068). The Magellan Ratio Dispenser Kit is intended for the application of fluids, as deemed necessary by the surgeon’s determination of the clinical use requirements, to facilitate the preparation of soft tissue prior to repair (K041830).
The platelet-rich plasma prepared by this device has not been evaluated for any clinical indications. Platelet-rich plasma prepared from a mixture of whole blood and bone marrow may contain higher levels of plasma-free hemoglobin than platelet-rich plasma prepared from whole blood.
1. Chedid MK, Tundo KM, Block JM, Muir JM. Hybrid biosynthetic autograft extender for use in posterior lumbar interbody fusion: safety and clinical effectiveness. Open Orthop J. 2015;9:218-225. doi: 10.2174/1874325001509010194.
2. Solchaga LA, Dennis JE, Goldberg VM, Kaplan AI. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res. 1999;17:205-213. doi: 10.1002/jbm.10011. • 3. Kim HD, Valentini RF. Retention and activity of BMP-2 in
3. Kim HD, Valentini RF. Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J Biomed Mater Res. 2002;59(3): 573-84. doi: 10.1002/jbm.10011.
4. Stewart G, Gage GB, Neidert G, Adkisson HD IV. Within patient radiological comparative analysis of the performance of two bone graft extenders utilized in posterolateral lumbar fusion: a retrospective case series. Front Surg. 2016;2(69). doi: 10.3389/fsurg.2015.00069.
5. Grande D; North Shore Hospital. In vitro cell binding assay results; unpublished, independent data.
6. Hsu EL, Ghodasra JH, Ashtekar A, et al. A comparative evaluation of factors influencing osteoinductivity among scaffolds designed for bone regeneration. Tissue Eng Part A. 2013;19(15-16):1764-1771. doi: 10.1089/ten. TEA.2012.0711.
7. Bohner M. Siliconsubstituted calcium phosphates - a critical review. Biomaterials. 2009;30(32):6403-6406. doi: 10.1016/j.biomaterials.2009.08.007.
8. Walsh WR, Oliver RA, Gage G, et al. Application of resorbable poly(lactide-co-glycolide) with entangled hyaluronic acid as an autograft extender for posterolateral intertransverse lumbar fusions in rabbits. Tissue Eng Part A. 2011;17(1-2):213-220. doi: 10.1089/ten.TEA.2010.0008.
9. Harris TE. Treatment of long bone fractures and nonunion using InQu Bone Graft Extender & Substitute.
10. Kerzner, MS. A radiographic and clinical retrospective case series of high risk foot & ankle procedures (Charcot reconstruction) using InQu Bone Graft Substitute.
1. Martin GJ, et. Al.Spine, 1999, 24, 637-645.
2.Data on file, DCIDonor Services Tissue Bank.
3.Muschler GF. J Bone Joint Surg Am. 1997, 79, 1699-1709.