1. AMSI Source: TS-0078-182.
2. Patel A, et al. Evaluation of autologous platelet-rich plasma for cardiac surgery: outcome analysis of 2000 patients. J Cardiothorac Surg. 2016. 11(1):62. doi: 10.1186/s13019-016-0452-9.
3. Castillo T, et al. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. The American Journal of Sports Medicine. 2011. 39(2):266-271.
4. Shapiro S, et al. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. The American Journal of Sports Medicine. 2017. 45(1):82-90. doi: 10.1177/0363546516662455.
5. Cassano JM, et al. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2016. doi: 10.1007/s00167-016-3981-9.
6. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999. 284(5411):143-147. doi: 10.1126/science.284.5411.143.
7. Kalka C, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. PNAS. 2000. 97(7):3422-3427.
8. Bessler H, et al. Postoperative pain, morphine consumption, and genetic polymorphism of IL-1β and IL-1 receptor antagonist. Neuroscience Letters. 2006. 404(1-2):154-158.
9. AMSI Source: TS-001A-008.
10. AMSI Source: TS-0078-103.
The Magellan Autologous Platelet Separator System is designed to be used in the clinical laboratory or intraoperatively at the point of care for the safe and rapid preparation of platelet-poor plasma and platelet concentrate (platelet-rich plasma) from a small sample of a mixture of blood and bone marrow. The plasma and concentrated platelets produced can be used for diagnostic tests. Additionally, the platelet-rich plasma can be mixed with autograft and/or allograft bone prior to application to an orthopedic site (BK040068). The Magellan Ratio Dispenser Kit is intended for the application of fluids, as deemed necessary by the surgeon’s determination of the clinical use requirements, to facilitate the preparation of soft tissue prior to repair (K041830).
The platelet-rich plasma prepared by this device has not been evaluated for any clinical indications. Platelet-rich plasma prepared from a mixture of whole blood and bone marrow may contain higher levels of plasma-free hemoglobin than platelet-rich plasma prepared from whole blood.
Return to magellan


1. Chedid MK, Tundo KM, Block JM, Muir JM. Hybrid biosynthetic autograft extender for use in posterior lumbar interbody fusion: safety and clinical effectiveness. Open Orthop J. 2015;9:218-225. doi: 10.2174/1874325001509010194.
2. Solchaga LA, Dennis JE, Goldberg VM, Kaplan AI. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res. 1999;17:205-213. doi: 10.1002/jbm.10011. • 3. Kim HD, Valentini RF. Retention and activity of BMP-2 in
3. Kim HD, Valentini RF. Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J Biomed Mater Res. 2002;59(3): 573-84. doi: 10.1002/jbm.10011.
4. Stewart G, Gage GB, Neidert G, Adkisson HD IV. Within patient radiological comparative analysis of the performance of two bone graft extenders utilized in posterolateral lumbar fusion: a retrospective case series. Front Surg. 2016;2(69). doi: 10.3389/fsurg.2015.00069.
5. Grande D; North Shore Hospital. In vitro cell binding assay results; unpublished, independent data.
6. Hsu EL, Ghodasra JH, Ashtekar A, et al. A comparative evaluation of factors influencing osteoinductivity among scaffolds designed for bone regeneration. Tissue Eng Part A. 2013;19(15-16):1764-1771. doi: 10.1089/ten. TEA.2012.0711.
7. Bohner M. Siliconsubstituted calcium phosphates - a critical review. Biomaterials. 2009;30(32):6403-6406. doi: 10.1016/j.biomaterials.2009.08.007.
8. Walsh WR, Oliver RA, Gage G, et al. Application of resorbable poly(lactide-co-glycolide) with entangled hyaluronic acid as an autograft extender for posterolateral intertransverse lumbar fusions in rabbits. Tissue Eng Part A. 2011;17(1-2):213-220. doi: 10.1089/ten.TEA.2010.0008.
9. Harris TE. Treatment of long bone fractures and nonunion using InQu Bone Graft Extender & Substitute.
10. Kerzner, MS. A radiographic and clinical retrospective case series of high risk foot & ankle procedures (Charcot reconstruction) using InQu Bone Graft Substitute.
Return to Inqu


Demineralized Bone Matrix
1. Martin GJ, et. Al.Spine, 1999, 24, 637-645.
2. Data on file, DCIDonor Services Tissue Bank.
3. Muschler GF. J Bone Joint Surg Am. 1997, 79, 1699-1709.
4.  Data on file at Xtant Medical.
Return to Influx DBM
1. Martin GJ, et. Al.Spine, 1999, 24, 637-645.
2. Urist, M.R. (2009). The Classic: A Morphogenetic Matrix for Differentiation of Bone Tissue. Clin Orthop Relat Res. 467:3068-3070.
3. Data on file, Advanced Biologics
Return to Influx SParC

Influx Plus

DBM Putty
1. Data on file at Xtant Medical.
2. Kiely, P.D. et al., (2014) Evaluation of a new formulation of demineralized bone matrix putty in rabbit posterolateral spinal fusion model. The Spine Journal. September 14(9): 2155-2163
Return to Influx Plus

Influx Sponge

1. Data on file at Xtant Medical.
2. Kiely, P.D. et al., (2014) Evaluation of a new formulation of demineralized bone matrix putty in rabbit posterolateral spinal fusion model. The Spine Journal. September 14(9): 2155-2163
3. McLain, R.F., et al. Aspiration of osteoprogenitor cells for augmenting spinal fusion... Journal of Bone and Joint Surgery. 87(12): 2655–2661, 2005.
Return to Influx sponge


1. Data on file at Xtant Medical
2. Block, J.E. The role and effectiveness of bone marrow in osseous regeneration. Medical Hypotheses. 65(4): 740–7, 2005
3. The presence of human hyaluronic acid confirmed by internal measurements using ELISA (Hyaluronan Quantkine ELISA Kit, R&D Systems)
4. The presence of growth factors confirmed by 3rd party testng using Fluorescent Multplex ELISA (Quantbody® Human Growth Factor Array, Ray BioTech).
5. Park C, Y, Kohanim S, Zhu L, Gehlbach P, L, Chuck R, S: Immunosuppressive Property of Dried Human Amniotc Membrane. Ophthalmic Res 2009;41:112-113. doi: 10.1159/000187629
6. Zakharova M, Hall B, Schallenberger M, Bangart K, Bangart D, Moore S, Thomas J: Case study report of chronic non-healing foot ulcers treated with dehydrated human amniotc membrane sheet. SAWC Spring 2020. CS-112.
Return to Inforce


1.Parrish, WR & Roides, B. Physiology of Blood Components in Wound Healing: an Appreciation of Cellular Co-Operativity in Platelet Rich Plasma Action. J Exerc Sports Orthop 2017; 4:1-14.
2. Harrell, DB et al. Non-Hematopoietic Essential Functions of Bone Marrow Cells: A Review of Scientific and Clinical Literature and Rationale for Treating Bone Defects. Orthop Rev 2015; 7:5691
3. Rubin, R & Strayer, DS. Rubin’s patholog: clinicopathologic foundations of medicine. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins 2008; 5th ed.
4. Podesta L, et al. Treatment of partial ulnar collateral ligament tears in the elbow with platelet-rich plasma. The American Journal of Sports Medicine. 2013;41(7):1689-94. doi: 10.1177/0363546513487979
5. Franklin, S. et al. The use of platelet-rich plasma for percutaneous treatment of tendinopathies. Operative Techniques in Orthopaedics. 2013;23(2):63-68
6. Jang SJ, et al. Platelet-rich plasma (PRP) injections as an effective treatment for early osteoarthritis. Eur J Orthop Surg Traumatol. 2013;23: 573-580. doi: 10.1007/s00590-012-1037-5
7. Haufe SMW and Mork AR. Intradiscal injection of hematopoietic stem cells in an attempt to rejuvenate the intervertebral disc. Stem Cells Dev. 15:136-137. 2006.
8. Betsch M, et al. Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PLOS One.  8(8): e71602. 2013.
Return to Patients page